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Abstract

A modification of the convolution integral method for linear oscillators is presented for the analysis of
certain strongly nonlinear oscillators. The modification provides an iteration scheme. Two examples are
given to illustrate the effectiveness of the proposed method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Many perturbation techniques exist for constructing analytical approximations to the
oscillatory solution of second-order, nonlinear differential equations [1,2]. But many of them
apply to weakly nonlinear cases only. To overcome the limitations, many novel techniques have
been proposed in recent years. For example, Cheung et al. [3] proposed a modified
Lindstedt–Poincare method, and Lim et al. [4] presented a modified Mickens procedures for
certain nonlinear oscillators. Recently, He [5] proposed a perturbation technique which is valid for
the Duffing equation with large parameters.
Consider a nonlinear oscillator modeled by

€x þ F ðxÞ ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0; (1)
see front matter r 2004 Elsevier Ltd. All rights reserved.
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where overdots denote differentiation with respect to time t and F ðxÞ satisfies the condition

Fð�xÞ ¼ �F ðxÞ: (2)

In this paper, a new approximate method is presented for studying the nonlinear oscillator
modeled by Eqs. (1) and (2), in which the convolution integral is used. The convolution integral
for linear oscillators is stated briefly in Section 2. In Section 3, the convolution integral for linear
oscillators is then used for nonlinear oscillators. In Section 4, two examples are given to illustrate
the effectiveness of the proposed method.
2. The convolution integral for linear oscillators

Consider a single degree of freedom system described by the linear differential equation of
motion

m €x þ kx ¼ F ðtÞ; xð0Þ ¼ A; _xð0Þ ¼ 0: (3)

This equation can be rewritten as

€x þ o2
nx ¼ f ðtÞ; xð0Þ ¼ A; _xð0Þ ¼ 0; (4)

where f ðtÞ ¼ F ðtÞ=m and o2
n ¼ k=m is the natural frequency of linear system (3). Using Eq. (2.120)

in Ref. [6] and letting z ¼ 0 in Eq. (2.120), the solution to Eq. (4) can be written in the form

xðtÞ ¼ A cosont þ

Z t

0

f ðtÞ
on

sinonðt � tÞdt: (5)

The integral Z t

0

f ðtÞ
on

sinonðt � tÞdt

is called the convolution or Duhamel integral [7]. It should be pointed out that this integral can
also obtained by using the Green’s function approach.
3. The convolution integral for nonlinear oscillators

Supposing that the natural frequency of Eq. (1) is o; which is unknown to be further
determined, we can obtain the linearized Eq. (1), which reads [5]

€x þ o2x ¼ 0; _xð0Þ ¼ A; _xð0Þ ¼ 0:

It follows from this equation and Eq. (1) that f ðxÞ ¼ o2x � FðxÞ may be ‘‘small’’ [8]. To apply the
convolution integral to nonlinear oscillators, we then rewrite Eq. (1) to read [4,5,8]

€x þ o2x ¼ o2x � FðxÞ¼:f ðxðtÞÞ; xð0Þ ¼ A; _xð0Þ ¼ 0: (6)

Comparing Eq. (6) with Eq. (4) and using Eq. (5), we get the following exact ‘‘solution’’ to Eq. (1):

xðtÞ ¼ A cosot þ
1

o

Z t

0

½o2xðtÞ � F ðxðtÞÞ� sinoðt � tÞdt: (7)
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To obtain the approximate analytical solution, we can substitute xðtÞ � A cosot into the right-
hand side of Eq. (7). Therefore, Eq. (7) becomes

xðtÞ � A cosot þ
1

o

Z t

0

½o2A cosot� F ðA cosotÞ� sinoðt � tÞdt: (8)

The initial details of this method will be illustrated by applying it to two examples.
4. Examples
Example 1. Consider the Duffing equation

€x þ x þ ex3 ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0: (9)

For this example, FðxÞ ¼ x þ ex3: Eq. (8) gives

xðtÞ � A cosot þ
1

o

Z t

0

½ðo2 � 1ÞA cosot� eA3 cos3ot� sinoðt � tÞdt

¼ A cosot þ
1

o

Z t

0

½ðo2 � 1� 3eA2=4ÞA cos t�
eA3

4
cos 3ot� sinoðt � tÞdt

¼ A cosot þ
A

2o
ðo2 � 1� 3eA2=4Þt sinot þ

eA3

32o2
ðcos 3ot � cosotÞ: ð10Þ

No secular term requires

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3eA2=4

q
: (11)

Therefore, the approximate solution to Eq. (9) is

xðtÞ ¼ A cosot þ
eA3

32o2
ðcos 3ot � cosotÞ: (12)

Eq. (11) is just the standard harmonic balance result [1] and Eq. (12) in agreement with the result
in Refs. [9,10]. The discrepancy of the approximate solution given by Eq. (11) with respect to the
exact solution is less than 2.22% [4]. It has been shown that Eq. (12) can give good
approximations for very large values of eA2 [11].
Example 2. Consider the nonlinear differential equation [12,13]

€x þ x1=3 ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0: (13)

For this example, FðxÞ ¼ x1=3; and Eq. (8) results in

xðtÞ � A cosot þ
1

o

Z t

0

½o2A cosot� A1=3ðcosotÞ1=3� sinoðt � tÞdt: (14)

It can be shown that

ðcos yÞ1=3 ¼ b1 cos yþ b3 cos 3yþ 	 	 	 ; (15)
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where b1 ¼ 1:15960; b3 ¼ �0:231919; etc. The computations of bi are given in detail in Appendix
A. Substituting Eq. (15) into Eq. (14) gives

xðtÞ ¼ A cosot þ
o2A � b1A

1=3

2o
t sinot þ

b3A
1=3

8o2
ðcos 3ot � cosotÞ: (16)

The requirement of no secular terms in xðtÞ implies that

o ¼

ffiffiffiffiffi
b1

p

A1=3
¼

1:07685

A1=3
: (17)

Then,

xHðtÞ ¼ xðtÞ ¼ A cosot �
0:02899A1=3

o2
ðcos 3ot � cosotÞ: (18)

The exact frequency of the periodic motion of Eq. (13) is given by [14]

oe ¼

ffiffiffi
p

p
Gð1=4Þ

2
ffiffiffi
6

p
Gð3=4ÞA1=3

¼
1:07045

A1=3
; (19)

where GðnÞ is the Gamma function [15]. The approximate frequencies obtained by a first-order
harmonic balance solution [12] and a second-order harmonic balance solution [13] are

o1 ¼ ð4=3Þ1=6=A1=3 ¼
1:04912

A1=3
; (20)

o2 ¼
1

3
4
þ 27

4

� �
z̄ þ 243

2

� �
z̄2

� �1=6 1þ z̄

A

� 	1=3

¼
1:06349

A1=3
z̄ � �

1

51

� 	
; (21)

respectively. We can see that Eq. (17) is more accurate than Eqs. (20) and (21). The second-order
harmonic balance approximation xMðtÞ to the periodic solution of Eq. (13) is [13]

xMðtÞ ¼
A

1þ z̄
ðcosot þ z̄ cos 3otÞ: (22)

The numerical solution xNumðtÞ of Eq. (13) obtained by using Runge–Kutta (R–K) method, and
the approximate solutions xHðtÞ and xMðtÞ computed by Eq. (18) and Eq. (22), respectively, are
plotted on Fig. 1 for A ¼ 1; 100; and 10 000. It can be seen from Fig. 1 that the Mickens solution
xMðtÞ and the present solution xHðtÞ are nearly identical to the numerical solutions.
5. Conclusions

A method for nonlinear oscillators is presented using the convolution integral. For the Duffing
equation it gives the same results as obtained in Refs. [1,9]. When applied to the nonlinear
oscillator equation for which the elastic restoring force is f ðxÞ ¼ �x1=3; the method leads to the
excellent approximate solutions. Obviously, it is also valid for f ðxÞ ¼ �xð2nþ1Þ=ð2mþ1Þ ðm; n ¼

0; 1; 2; . . . ; nomÞ:
The present method provides an iteration scheme. The iteration procedure can be carried on if

solutions of higher degree of accuracy are required. For example, we may substitute Eq. (12) or
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Fig. 1. Comparison of the approximate solutions with the numerical solutions to Eq. (13) for: (a) A ¼ 1; (b) A ¼ 100;
(c) A ¼ 10 000:
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Eq. (18) into the right-hand side of Eq. (7) for the second iteration. But when f ðxÞ ¼

�xð2nþ1Þ=ð2mþ1Þ ðm; n ¼ 0; 1; 2; . . . ; nomÞ; the second iteration is not convenient. For the first
iteration, Eq. (8) is simple and easy to use. At present, the authors cannot provide a rigorous
proof of the convergence of the convolution integral method, for which further research is needed.
The possibility of further generalizing the method is now being investigated for the nonlinear
oscillating differential equation €x þ f ðx; _xÞ ¼ 0:
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Appendix A. The computations of bi for Example 2

Since ðcos yÞ1=3 is an even function of y; the Fourier series expansion of ðcos yÞ1=3 is expected to
take the form [16]

ðcos yÞ1=3 ¼
b0

2
þ b1 cos yþ b2 cos 2yþ b3 cos 3yþ b4 cos 4yþ b5 cos 5yþ 	 	 	 ; (A.1)

where

b2i ¼
2

p

Z p

0

ðcos yÞ1=3 cosð2iyÞdy

¼
2

p

Z p=2

0

ðcos yÞ1=3 cosð2iyÞdyþ
Z p

p=2
ðcos yÞ1=3 cosð2iyÞdy

" #
; i ¼ 0; 1; . . . : ðA:2Þ

Letting y ¼ p� f; we haveZ p

p=2
ðcos yÞ1=3 cosð2iyÞdy ¼ �

Z p=2

0

ðcosfÞ1=3 cosð2ifÞdf; i ¼ 0; 1; . . . : (A.3)

Substituting Eq. (A.3) into Eq. (A.2) gives

b2i ¼ 0; i ¼ 0; 1; . . . : (A.4)

Using the relation [17]Z p=2

0

cosn xdx ¼

Z p=2

0

sinn xdx ¼

ffiffiffi
p

p
Gðn

2
þ 1

2
Þ

2Gðn
2
þ 1Þ

ðn4� 1Þ; (A.5)

we have

b1 ¼
2

p

Z p

0

ðcos yÞ1=3 cos ydy ¼
4

p

Z p=2

0

ðcos yÞ4=3 dy ¼
2Gð7=6Þffiffiffi
p

p
Gð5=3Þ

¼ 1:15960; (A.6)
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b3 ¼
2

p

Z p

0

ðcos yÞ1=3 cos 3ydy ¼
2

p

Z p

0

ðcos yÞ1=3ð4 cos3 y� 3 cos yÞdy

¼
16

p

Z p=2

0

ðcos yÞ10=3 dy�
12

p

Z p=2

0

ðcos yÞ4=3 dW ¼ �
2Gð7=6Þ

5
ffiffiffi
p

p
Gð5=3Þ

¼ �0:231919; ðA:7Þ

b5 ¼
2

p

Z p

0

ðcos yÞ1=3 cos 5ydy ¼
2

p

Z p

0

ðcos yÞ1=3ð16 cos5 y� 20 cos3 yþ 5 cos yÞdy

¼
4

p

Z p=2

0

½16ðcos yÞ16=3 � 20ðcos yÞ10=3 þ 5ðcos yÞ4=3�dy

¼
Gð7=6Þ

5
ffiffiffi
p

p
Gð5=3Þ

¼ 0:115960: ðA:8Þ
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